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EVALUATION OF THE FUNDAMENTAL
VIBRATION FREQUENCY OF A BENDING

PLATE BY USING AN ITERATIVE APPROACH
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P.O. Box 284, Department of Computer Science, Nanjing University, Nanjing,
Jiangsu 210093, People’s Republic of China
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The fundamental vibration frequency of a bending plate is investigated by using an
iterative approach. The biharmonic operator in the equation is reduced by performing the
Laplace operator twice, and the finite difference method is used to solve the problem. The
frequency and the deflection mode are adjusted and changed simultaneously in the
iteration. The boundary conditions for the clamped edge case and free edge case are
satisfied implicitly. A convergent tendency has been found in the solution, and high
accuracy has been proved in the example problem. Numerical examples are given to
demonstrate the efficiency of the method.
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1. INTRODUCTION

Previously, the buckling loading of a compression bar with a varying cross-section was
investigated by using the shooting method[1]. Clearly, the problem belongs to the
eigenvalue problem of an ordinary differential equation. In this paper, the fundamental
vibration frequency of a bending plate is studied. In fact, the vibration problem of a
bending plate can be reduced to an eigenvalue problem of a partial differential equation.
An iterative approach which is like the shooting method in reference [1] is used to solve
the problem. However, the suggested approach is not a simple replication of the shooting
method in the ordinary differential equation. This can be seen from the following analysis.

For the natural frequency of a rectangular plate, much work has been done by using
various methods. Some work in this field is based on the solution of a differential equation
[2–3]. Several of them depend on the appropriate choice of the deflection function. In
addition, by minimizing the Rayleigh quotient with respect to relevant coefficients in the
deflection function, the eigenvalue equation is obtainable [4–7]. In fact, it is not easy to
use the above mentioned methods to solve the frequency problem with a complicated
boundary condition, as in the case where one part of an edge is free and the remainder
is simply supported. By using a conforming rectangular element, the finite element solution
for the frequency problem was also suggested [8]. Generally, it is time consuming to
assemble the relevant matrix and to evaluate the eigenvalue using the finite element
method.

In this paper, the fundamental vibration frequency of a bending plate is investigated by
using an iterative approach. In the analysis, the biharmonic operator is reduced by
performing the Laplace operator twice, and the finite difference method is used to solve
the problem. This can considerably reduce the effort of derivation and computation. The
frequency and the deflection mode are adjusted and changed simultaneously in the
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iteration. The boundary conditions for the clamped edge case and free edge case are
satisfied implicitly. In the derivation and the actual computation, the method only depends
on the solution of finite difference equation and the numerical integration. Comparatively
speaking, the mentioned work can be easily performed. Finally, several numerical
examples are given to demonstrate the use of the suggested iterative process.

2. ANALYSIS

The problem investigated is illustrated by a rectangular plate in free vibration (Figure 1).
It is well known that the governing equation for the deflection mode w(x, y) takes the form
[2, 3].

9292w(x, y)= (rh/D)v2w, 92 = 12/1x2 + 12/1y2, (1)

where D=Eh3/12(1− n2) denotes the rigidity of the bending plate, r the density of
materials, h the thickness of plate, E the Young’s modulus of elasticity, n the Poisson ratio,
and v the fundamental vibration frequency.

One assumes that three edges (OB, BC and AC) in Figure 1 are simply supported, and
the boundary conditions take the form

w=x=0 =0, 92w=x=0 =0, 0E yE b along edge OB, (2a, b)

w=x= a =0, 92w=x= a =0, 0E yE b along edge AC, (2c, d)

w=y= b =0, 92w=y= b =0, 0E xE a along edge BC, (2e, f)

In addition one edge, OA, in Figure 1 is assumed to be clamped,

w=y=0 =0, 1w/1y=y=0 =0, 0E xE a along edge OA in the clamped case.

(2g, h)

Alternatively, in the free traction case of edge OA, the condition (2g, h) should be
replaced by

12w/1y2 + n 12w/1x2=y=0 =0, 13w/1y3 + (2− n) 13w/1x2 1y=y=0 =0,

0E xE a along edge OA in the traction free case (2i, j)

Figure 1. (a) a rectangular bending plate, (b) the center node with four adjacent nodes.
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For convenience in derivation, one introduces the function u(x, y) defined by

u(x, y)=92w(x, y) (3)

Therefore, the governing equation and the boundary conditions can be rewritten as

92u(x, y)= (rh/D)v2w(x, y), 92w(x, y)= u(x, y) (4, 5)

and

w=x=0 =0, u=x=0 =0, 0E yE b along edge OB, (6a, b)

w=x= a =0, u=x= a =0, 0E yE b along edge AC, (6c, d)

w=y= b =0, u=y= b =0, 0E xE a along edge BC, (6e, f)

w=y=0 =0, 1w/1y=y=0 =0, 0E xE a along edge OA in the clamped case.

(6g, h)

In the traction free case of edge OA, from (2i, j), the condition (6g, h) should be replaced
by

a 12w/1y2 + u=y=0 =0, b 13w/1y3 + 1u/1y=y=0 =0

0E xE a along edge OA in the free case, (6i, j)

where

a=(1− n)/n, b=−(1− n)/(2− n). (7)

In the iterative approach, the finite difference method is used. In computation, the
rectangular region is divided into a N1 ×N2 mesh with the side lengths dx , dy in the x and
y directions respectively (Figure 1).

The iterative process is performed by using the following steps:
(1) It is assumed that, after the nth iteration the eigenvalue and the values of the

functions u(x, y) and w(x, y) at nodes are known, and they are denoted by v(n), u(n)(x, y),
w(n)(x, y), respectively.

(2) The second step is to obtain the new values of u(x, y) at the inner nodes. By using
the finite difference method, from (4) one has [2]

ũ(n+1)j,k = d2
xd

2
y /2(d2

x + d2
y ){(1/d2

x)(u(n)j,k−1 + u(n)j,k+1)

+ (1/d2
y )(u(n)j−1,k + u(n)j+1,k)− (rh/D)v2

(n)w(n)j,k} for all inner nodes, (8)

where, for example, u(n)j−1,k denotes the value of u(x, y) at the point numbered by ( j−1, k)
after the nth round iteration, and dx , dy denote the mesh side lengths (Figure 1(b)). In fact,
the Seidel iteration is used for equation (8) [9]. Finally, the values of the function
ũ(n+1)(x, y) are obtained at the inner nodes.

(3) The third step is to obtain the new values of w(x, y) at the inner nodes. By using
the finite difference method, from (5) one has [2]

w̃(n+1)j,k = d2
xd

2
y /2(d2

x + d2
y ){(1/d2

x)(w(n)j,k−1 +w(n)j,k+1)

+ (1/d2
y )(w(n)j−1,k +w(n)j+1,k)− ũ(n+1)j,k} for all inner nodes, (9)

Similarly, the Seidel iteration is used for (9) [9]. Finally, the values of the function
w̃(n+1)(x, y) are obtained at the inner nodes.

(4) The fourth step is to adjust and to obtain the boundary values of w(x, y) and u(x, y)
along the edge OA, in the clamped edge case, or in the traction free case. Clearly, in order
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to perform the next computation stage, it is necessary to know the values of the functions
u(x, y) and w(x, y) at the boundary nodes (Figure 1). From the condition (6) one sees that,
the boundary values of w(x, y) along the edges OB, AC, OA, BC and those of u(x, y) along
the edges OB, AC, BC are equal to zero. Those values are given beforehand and are not
changed in the iterative process. The remaining problem is how condition (6h) can be
satisfied.

In fact, the boundary value condition at any node P(x0, 0) on the edge OA can be
satisfied in the following manner. First, at the vicinity of point P one assumes

w(x0, y)= g(y/dy)2 + h(y/dy)4, (10)

where dy denotes the mesh side length. Therefore, the condition (6h) is satisfied and the
coefficient g and h can be evaluated by letting

w(x0, dy)=w1 = g+ h, w(x0, 2dy)=w2 =4g+16h, (11)

where w1, w2 denote the values of w(x, y) at the points P1, P2, respectively (Figure 1). From
equation (11) it follows

g=(16w1 −w2)/12, h=(w2 −4w1)/12. (12)

From (10) and (12) one has

12w(x0, y)/1y2=y=0 =2g/d2
y =(16w1 −w2)/6d2

y (13)

and obtains the value of the function u(x, y) at the point P (Figure 1) as

u=P =(12w/1x2 + 12w/1y2)=P = 12w/1y2=P =(16w1 −w2)/6d2
y . (14)

The above derivation means that: (a) the boundary condition is satisfied implicitly by the
suggested assumption shown by equation (10), (b) the values of u(x, y) at the nodes on
the edge OA is obtained and adjusted from the values of w(x, y) at the inner nodes.
Therefore, one can adjust and obtain the values of the function u(x, y) along the edge OA
by using equation (14).

In the second case, the edge OA is traction free. In this case, the boundary values of
both the functions w(x, y) and u(x, y) should be adjusted. To this end, one assumes

w(x0, y)=wp + d1(y/dy)+ d2(y/dy)2 + d3(y/dy)3, u(x0, y)= up +(u1 − up)(y/dy),

(15, 16)

where wp denotes the value of the function w(x, y) at the point P, and up , u1 denote the
values of the function u(x, y) at the points P and P1, respectively (Figure 1).

Substituting y= dy , y=2dy , y=3dy into (15), one obtains

wp + d1 + d2 + d3 =w1, wp +2d1 +4d2 +8d3 =w2, wp +3d1 +9d2 +27d3 =w3.

(17)

where w1, w2, w3 denote the value of the function w(x, y) at the inner node points P1, P2, P3

respectively (Figure 1).
In addition, substituting (15) and (16) into the boundary condition (6i, j), it follows

2ad2 + upd
2
y =0, 6bd3 + (u1 − up)d2

y =0. (18)

Consider wp , up , d1, d2, d3 as unknowns, from five equations in (17) and (18), one obtains

wp =1/(b−2a){u1d
2
y + a(−5w1 +4w2 −w3)+ b(3w1 −3w2 +w3)},

up =(a/d2
y ){−2wp +5w1 −4w2 +w3}. (19)
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The above derivation reveals that the boundary values wp , up have a relation with the values
w1, w2, w3, u1 which are the values of the function w(x, y) and u(x, y) at the inner nodes
(Figure 1). Finally, one adjusts and obtains the new values of the functions w(x, y) and
u(x, y) at the nodes along the edge OA by using equation (19).

(5) The fifth step is to obtain the final results after the (n+1)th iteration. Obviously,
the investigated vibration mode can differ from each other by an arbitrary multiple. That
is to say, in order to judge the approximation of the vibration mode, the mode should be
normalized by some technique. Otherwise, comparison for different modes for the same
eigenvalue is meaningless. To this end, one calculates

g gA

[w̃(n+1)(x, y)]2 dx dy=Q2, (20)

where A denotes the rectangular region. Since the values of the function w̃(x, y) at the
nodes are known, the numerical integration can be easily deduced. In addition, one lets

w(n+1)(x, y)= w̃(n+1)(x, y)/Q, u(n+1)(x, y)= ũ(n+1)(x, y)/Q. (21)

In this case, the function w(n+1)(x, y) satisfies

g gA

[w(n+1)(x, y)]2 dx dy=1. (22)

From the above mentioned steps one sees that

9292w̃(n+1)(x, y)=92ũ(n+1)(x, y)= (rh/D)v2
(n)w(n)(x, y). (23)

In fact, equation (23) is satisfied in finite difference form. Substituting (21) into (23) yields

9292w(n+1)(x, y)= (rh/D)(1/Q)v2
(n)w(n)(x, y). (24)

Simply considering two points: (a) the function w(n)(x, y) has been normalized in the
previous computation stage (b) it is assumed that

w(n+1)(x, y)1w(n)(x, y) (25)

Thus, the coefficient at the right side of (24) will be the new eigenvalue. Therefore, one
has

v2
(n+1) = (1/Q)v2

(n) (26)

(6) The final step is to evaluate the deviation in iteration. In this study, one assumes
that if the following conditions:

=v2
(n+1) −v2

(n)=E o1, max=w(n+1)(x, y)−w(n)(x, y)=E o2 for all nodes (27, 28)

are satisfied, the fundamental vibration frequency and the vibration mode w(x, y) are
finally obtained. Otherwise, one needs to perform the next round of iterative computation.

In fact, if all edges are simply supported, the fourth step is not necessary. In the case
of a=1 rh/D=1 one chooses o1 =10−5, o2 =10−8. The iterative process is convergent in
general. In addition, in the first round computation, the values of v2 and u(x, y), w(x, y)
can be assumed freely. For example, v2 can be chosen to be an arbitrary positive value,
w(x, y) to be any positive values at inner nodes, u(x, y) to be zero at inner nodes.
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T 1

The calculated fundamental frequency f(b/a) for a rectangular bending
plate with the simply supported edges (see Figure 1 and equation (29))

b/a
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

N 1 2 3 4 5

10 4·425 3·498 3·298 3·225 3·191
20 4·438 3·509 3·308 3·235 3·201
30 4·441 3·511 3·310 3·237 3·202
40 4·442 3·511 3·311 3·237 3·203
Exact 4·443 3·512 3·312 3·238 3·204

N: number of divisions used for each edge.

3. NUMERICAL EXAMPLES

Five examples are presented to verify the accuracy of the suggested method or to provide
some new results.

Example 3.1.
In the first example, all edges of the rectangular plate with width a and height b were simply
supported (Figure 1). In computation 10×10, 20×20, 30×30, 40×40 meshes were
used to perform the iteration process. The final calculated results were expressed by

v2 = (D/rh)(l/a)4, l= f(b/a). (29)

Meanwhile, the problem has an exact solution as follows [2, 3]

lext = f(b/a)= p(1+ (b/a)−2)1/2 (30)

The numerical results obtained for f(b/a) are listed in Table 1. From which one sees that
a convergent tendency can be seen when the mesh size decreases. In the case of a 40×40
mesh, deviation from the exact solution is negligible.

Example 3.2.
In the second example, two edges of the rectangular plate are clamped, while the other
two edges are simply supported (Figure 1). For calculation, a 40×40 mesh was used to
perform the iteration process. Three boundary conditions were assumed in the
computation (a) type A, where the lower and upper edges are simply supported, and the
left and right edges are clamped, (b) type B, where the lower and upper edges are clamped
and the left and right edges are simply supported. (c) type C, where two adjacent edges

T 2

The calculated fundamental frequency g(b/a) for a rectangular
bending plate with two simply supported edges and two clamped edges

(see Figure 1 and equation (31))

b/a
ZXXXXXXXXXXXCXXXXXXXXXXXV

Type 1 2 3 4 5

A 5·377 4·876 4·791 4·762 4·749
5·380†

B 5·377 3·697 3·269 3·262 3·215
C 5·198 4·213 4·045 3·990 3·965

†Obtained in reference [2].
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T 3

The calculated fundamental frequency h(b/a) for a rectangular
bending plate with various boundary conditions (see Figure 1 and

equation (32))

b/a
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Type 2·5 1·5 1·0 2/3 0·4

A 3·156 3·242 3·394 3·678 4·310
3·183† 3·266† 3·418† 3·703† 4·336†
3·187‡ 3·267‡ 3·418‡ 3·703‡ 4·336‡

B 3·099 3·090 3·080 3·069 3·058
3·124† 3·114† 3·103† 3·092† 3·080†

C 1·223 2·046 3·080 4·635 7·748

† Obtained in reference [2].
‡ Obtained in reference [8].

are simply supported and other two adjacent edges are clamped. The final calculated results
are expressed by

v2 = (D/rh)(l/a)4, l= g(b/a) (31)

The numerical results obtained for g(b/a) are listed in Table 2.
Example 3.3.

In the third example for the rectangular plate (Figure 1), n=0·3 is taken and a 30×30
mesh was used in computation. Three boundary conditions were assumed as follows (a)
type A, the lower edge is free, and others are simply supported. (b) type B, the lower and
upper edges are free and the left and right edges are simply supported. (c) type C, the lower
and upper edges are simply supported and the left and right edges are free. The final
calculated results are expressed by

v2 = (D/rh)(l/a)4, l= h(b/a) (32)

The obtained numerical results for h(b/a) are listed in Table 3, from which one can see
that the deviation of the results obtained in different ways is very small.

Example 3.4.
In the fourth example of the rectangular plate (Figure 1), n=0·3 is taken a 20×20 mesh
was used in computation. Five boundary conditions were assumed as follows (a) type A:

T 4

The calculated fundamental frequency p(b/a) for a rectangular bending
plate with various boundary conditions (see Figure 1 and equation (33))

b/a
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Type 2·5 1·5 1·0 2/3 0·4

A 3·380 3·772 4·438 5·658 8·450
(exact) 3·384 3·776 4·443 5·664 8·459
B 3·379 3·769 4·431 5·640 8·386
C 3·364 3·722 4·311 5·295 6·792
D 3·292 3·532 3·889 4·415 5·265
E 3·144 3·230 3·382 3·666 4·297
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Figure 2. A triangular bending plate.

all edges are simply supported, (b) type B: 1/4 of the lower edge is free and others are
simply supported, (c) type C: 2/4 of the lower edge is free and others are simply supported,
(d) type D: 3/4 of the lower edge is free and others are simply supported, (e) type E: the
lower edge is free and others are simply supported. The final calculated results are
expressed by

v2 = (D/rh)(l/a)4, l= p(b/a) (33)

The numerical results obtained for p(b/a) are listed in Table 4, from which one can see
that compared with the free edge case, the natural frequency is higher in the simply
supported edge case.

Example 3.5.
In the fifth example, a triangular bending plate is considered for evaluating the
fundamental vibration frequency (Figure 2). The inclined edge is assumed to be simply
supported. For the other two edges, the following four types of boundary condition are
assumed: (a) type A: both edges are simply supported, (b) type B: both edges are clamped,
(c) type C: the horizontal edge is simply supported and the vertical edge is clamped, (d)
type D: the horizontal edge is clamped and the vertical edge is simply supported. In
computation, 40 divisions were used for each edge to perform the iteration process. The
final calculated results are expressed by

v2 = (D/rh)(l/a)4, l= q(b/a) (34)

The numerical results obtained for q(b/a) are listed in Table 5.

T 5

The calculated fundamental frequency q(b/a) for a triangle bending plate with various
boundary conditions (see Figure 2 and equation (34))

b/a
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

Type 1 2 3 4 5 6 7 8 9 10

A 7·019 5·264 4·670 4·363 4·173 4·041 3·945 3·870 3·810 3·761
B 8·550 6·413 5·691 5·320 5·091 4·934 4·819 4·730 4·659 4·601
C 7·770 6·024 5·433 5·129 4·940 4·810 4·714 4·640 4·581 4·533
D 7·770 5·633 4·912 4·542 4·314 4·157 4·042 3·953 3·883 3·825
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4. REMARKS

In the literature, the natural vibration frequency has been mainly investigated in two
different ways. The first was to use the Rayleigh–Ritz principle. The second way was to
investigate the frequency by using the partial differential equation. The suggested approach
belongs to the latter. However, in this paper the partial differential equation is
approximated by the finite difference equation. Generally speaking, the suggested
approach provides a relatively simple way to study the fundamental vibration frequency.
For example, by using a rather simple program with 250 source lines, very accurate results
have been obtained.
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